Publications

Accumulation and Evolution of Design Knowledge in Design Science Research - A Journey Through Time and Space

Sir Isaac Newton famously said, "If I have seen further it is by standing on the shoulders of giants." Research is a collaborative, evolutionary endeavor-and it is no different with design science research (DSR) which builds upon existing design knowledge and creates new design knowledge to pass on to future projects. However, despite the vast, growing body of DSR contributions, scant evidence of the accumulation and evolution of design knowledge is found in an organized DSR body of knowledge. Most contributions rather stand on their own feet than on the shoulders of giants, and this is limiting how far we can see; or in other words, the extent of the broader impacts we can make through DSR. In this editorial, we aim at providing guidance on how to position design knowledge contributions in wider problem and solution spaces. We propose (1) a model conceptualizing design knowledge as a resilient relationship between problem and solution spaces, (2) a model that demonstrates how individual DSR projects consume and produce design knowledge, (3) a map to position a design knowledge contribution in problem and solution spaces, and (4) principles on how to use this map in a DSR project. We show how fellow researchers, readers, editors, and reviewers, as well as the IS community as a whole, can make use of these proposals, while also illustrating future research opportunities.

Design Principles for Sensemaking Support Systems in Environmental Sustainability Transformations

This paper reports on the results of a design science research (DSR) study that develops design principles for information systems (IS) that support organisational sensemaking in environmental sustainability transformations. We identify initial design principles based on salient affordances required in organisational sensemaking and revise them through three rounds of developing, demonstrating and evaluating a prototypical implementation. Through our analysis, we learn how IS can support essential sensemaking practices in environmental sustainability transformations, including experiencing disruptive ambiguity through the provision of environmental data, noticing and bracketing, engaging in an open and inclusive communication and presuming potential alternative environmentally responsible actions. We make two key contributions: First, we provide a set of theory-inspired design principles for IS that support sensemaking in sustainability transformations, and revise them empirically using a DSR method. Second, we show how the concept of affordances can be used in DSR to investigate how IS can support organisational practices. While our findings are based on the investigation of the substantive context of environmental sustainability transformation, we suggest that they might be applicable in a broader set of contexts of organisational sensemaking and thus for a broader class of sensemaking support systems.

A Framework for Theory Development in Design Science Research: Multiple Perspectives

One point of convergence in the many recent discussions on design science research in information systems (DSRIS) has been the desirability of a directive design theory (ISDT) as one of the outputs from a DSRIS project. However, the literature on theory development in DSRIS is very sparse. In this paper, we develop a framework to support theory development in DSRIS and explore its potential from multiple perspectives. The framework positions ISDT in a hierarchy of theories in IS design that includes a type of theory for describing how and why the design functions: Design-relevant explanatory/predictive theory (DREPT). DREPT formally captures the translation of general theory constructs from outside IS to the design realm. We introduce the framework from a knowledge representation perspective and then provide typological and epistemological perspectives. We begin by motivating the desirability of both directive-prescriptive theory (ISDT) and explanatory-predictive theory (DREPT) for IS design science research and practice. Since ISDT and DREPT are both, by definition, mid-range theories, we examine the notion of mid-range theory in other fields and then in the specific context of DSRIS. We position both types of theory in Gregor’s (2006) taxonomy of IS theory in our typological view of the framework. We then discuss design theory semantics from an epistemological view of the framework, relating it to an idealized design science research cycle. To demonstrate the potential of the framework for DSRIS, we use it to derive ISDT and DREPT from two published examples of DSRIS.

The Anatomy of a Design Theory

Design work and design knowledge in Information Systems (IS) is important for both research and practice. Yet there has been comparatively little critical attention paid to the problem of specifying design theory so that it can be communicated, justified, and developed cumulatively. In this essay we focus on the structural components or anatomy of design theories in IS as a special class of theory. In doing so, we aim to extend the work of Walls, Widemeyer and El Sawy (1992) on the specification of information systems design theories (ISDT), drawing on other streams of thought on design research and theory to provide a basis for a more systematic and useable formulation of these theories. We identify eight separate components of design theories: (1) purpose and scope, (2) constructs, (3) principles of form and function, (4) artifact mutability, (5) testable propositions, (6) justificatory knowledge (kernel theories), (7) principles of implementation, and (8) an expository instantiation. This specification includes components missing in the Walls et al. adaptation of Dubin (1978) and Simon (1969) and also addresses explicitly problems associated with the role of instantiations and the specification of design theories for methodologies and interventions as well as for products and applications. The essay is significant as the unambiguous establishment of design knowledge as theory gives a sounder base for arguments for the rigor and legitimacy of IS as an applied discipline and for its continuing progress. A craft can proceed with the copying of one example of a design artifact by one artisan after another. A discipline cannot.

A Design Science Research Methodology for Information Systems Research

The paper motivates, presents, demonstrates in use, and evaluates a methodology for conducting design science (DS) research in information systems (IS). DS is of importance in a discipline oriented to the creation of successful artifacts. Several researchers have pioneered DS research in IS, yet over the past 15 years, little DS research has been done within the discipline. The lack of a methodology to serve as a commonly accepted framework for DS research and of a template for its presentation may have contributed to its slow adoption. The design science research methodology (DSRM) presented here incorporates principles, practices, and procedures required to carry out such research and meets three objectives: it is consistent with prior literature, it provides a nominal process model for doing DS research, and it provides a mental model for presenting and evaluating DS research in IS. The DS process includes six steps: problem identification and motivation, definition of the objectives for a solution, design and development, demonstration, evaluation, and communication. We demonstrate and evaluate the methodology by presenting four case studies in terms of the DSRM, including cases that present the design of a database to support health assessment methods, a software reuse measure, an Internet video telephony application, and an IS planning method. The designed methodology effectively satisfies the three objectives and has the potential to help aid the acceptance of DS research in the IS discipline.